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1 The Graph Minor Theorem

The Graph Minor Theorem of Robertson and Sey-
mour is one of the most celebrated results in the his-
tory of combinatorics, spanning decades (and hun-
dreds of pages) of work. In this note we discuss re-
cent work of Miyata, Proudfoot, and the author that
proposes a framework that would allow one to ap-
ply the Graph Minor Theorem to algebra and topol-
ogy, building on seminal contributions by Sam and
Snowden. Though the capstone of this framework is
still only conjectural (See Conjecture 2.3), a weaker
version (See Theorem 2.4) of the capstone has been
proven and already has far ranging consequences in
topological combinatorics and algebra. Specifically,
we will discuss applications of this framework to
the study of matching complexes and configuration
spaces of graphs.

To begin, let’s standardize terminology by defining
a graph to be a (non-empty) finite, connected, at
most one-dimensional CW-complex. If one prefers to
think about graphs G in terms of collections of edges,
E(G), and vertices, V (G), then our provided defini-
tion essentially amounts to saying that our graphs
will always be finite, connected, and may have multi-
edges and loops. The theory of graphs, having essen-
tially begun in work of Euler, has developed into one
of the most foundational subjects in all of mathemat-
ics, being pivotal in numerous fields such as combi-
natorics, algebra, and many others. For the purposes
of this note, we will focus specifically on the theory
of graph minors.

Definition 1.1. Let G be a graph, and let e be an
edge that is not a loop. Then the contraction of e is
the (necessarily homotopy equivalent) graph obtained
from G by crushing e to a point. If e is an edge (that

may be a loop) whose removal does not disconnect
G, then the deletion of e is the graph obtained from
G by removing the edge e without removing its end
points.

Given two graphs G,G′, we say that G is a mi-
nor of G′ if G is isomorphic to a graph that can
be obtained from G′ by a sequence of edge deletions
and contractions. The minor relation imposes a par-
tial order on the collection of graphs, and we write
G ≤ G′.

One of the early triumphs in the study of graph
minors, which was also one of the great accomplish-
ments of early topological graph theory, is the follow-
ing theorem, independently discovered by Kuratowski
and Wagner. By definition a graph is planar if it can
be embedded in the plane.

Theorem 1.2 (Kuratowski and Wagner). Let G be
a graph. Then G is planar if and only if it admits
neither the complete graph on 5 vertices K5, nor the
complete bipartite graph K3,3, as a minor.

Important here is that not only does there exist a
completely classifiable collection of so-called “forbid-
den” minors, but that this collection is finite. While
one might expect that this finiteness is a consequence
of the rigidity of the plane, in fact it is the result of
something far more general.

Theorem 1.3 (Robertson and Seymour, [RS04]).
Let S be any collection of graphs. Then there exists a
finite collection of graphs in S that are minimal with
respect to the minor order (restricted to S). Equiva-
lently, if S is any collection of graphs which is closed
under taking minors, then there exists some finite col-
lection of graphs {Gi} such that for any graph G, G
is in S if and only if G does not admit any of the
graphs Gi as a minor.

The conclusion of the Graph Minor Theorem is
often summarized as saying that the graph minor
relation is a well-quasi-order. The Kuratowski–
Wagner theorem tells us that if S is the (minor
closed) class of planar graphs, then the finite col-
lection of forbidden minors is precisely {K5,K3,3}.
Obviously, however, the graph minor theorem is far
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more powerful than Kuratowski–Wagner, as it guar-
antees such a finite forbidden minor classification
must exist for any minor closed property. It should
be noted however, that the neither graph minor the-
orem nor its proof provide any way to actually deter-
mine the finite collection of forbidden minors for any
given minor property! While there are some circum-
stances where such an explicit characterization has
been accomplished, the vast majority remain out of
our reach. Famously, there is a collection of 17,523
graphs which are known to be forbidden minors for
toroidal graphs, i.e. graphs that can be embedded
into the torus, though it is unknown whether this list
is exhaustive!

We take the time here to also point out that the
Graph Minor Theorem generalizes a long list of well
known well-quasi-order theorems. These include (in
increasing order of generality) Dickson’s Lemma
– that the coordinate-wise poset on Nr is a well-
quasi-order – Higman’s Lemma – that the poset
of words on a well-quasi-ordered poset is itself well-
quasi-ordered – and Kruskal’s Tree Theorem –
that the poset of rooted trees is well-quasi-ordered.

2 The Categorical Graph Minor
Theorem

Moving on from the classical combinatorics of the
Graph Minor Theorem, we would now like to move
the reader in the direction of its categorification. Cat-
egorification is not something that has a completely
rigorous definition, but rather something you just
kind of “know” when you see it. It can oftentimes
be summarized by the following statement: all non-
negative integers, regardless of the counting problem
that spawned them, are secretly the dimensions of
some vector spaces, whose algebra encodes and ex-
pands upon the originating combinatorics. Of course,
our ultimate goal is to apply a kind of Graph Minor
Theorem to problems arising from algebra and topol-
ogy, and so the most natural first step in this process
is to take the combinatorial content of the Graph Mi-
nor Theorem and expand it into the realms of algebra.

Under this somewhat vague guidance one often

finds that statements like the Graph Minor Theorem
– that a given poset is a well-quasi-order – translate
to a Noetherianity statement in the algebraic context
of the categorification. Our next major goal will be
to make all of this more precise by first introducing
the graph minor category G. Before we get into the
most technical details of this construction, we present
an example from topological combinatorics that will
hopefully motivate why one would want a kind of
“categorical” Graph Minor Theorem.

If G is a graph, we define the matching complex
MG to be the simplicial complex whose i-simplicies
are collections of edges of G, {e0, . . . , ei}, with no
overlapping endpoints, i.e. matchings of size i. The
homology groups of these spaces have been of consid-
erable interest in topological combinatorics for many
years [Wac03, Jon10]. This is especially true of the
cases whereG = Kn is a complete graph orG = Kn,m

is a complete bipartite graph.

Now if one knows G ≤ G′, as well as the data of
which edges ofG′ were deleted or contracted to obtain
G, one can see that the edges of G naturally include
into those of G′ in such a way that edges which were
non-adjacent inGmust also be non-adjacent inG′. In
particular, if {e0, . . . , ei} is an i-simplex ofMG, then
one has a naturally associated i-simplex ofMG′ . This
association then induces a map between the abelian
groups

Hi(MG)→ Hi(MG′).

We have therefore now found ourselves in a situation
where for each graph G we have a finitely generated
abelian group Hi(MG), with the additional structure
that wheneverG is a minor of another graphG′, there
is a natural homomorphism,

Hi(MG)→ Hi(MG′).

In a situation such as this, one would hope that a cat-
egorical version of the Graph Minor Theorem would
imply a kind of finite generation for the entirety of
Hi(M•). In other words, it would imply the existence
of a finite collection of graphs {G1, . . . , GN} such that
for any graph G the group Hi(MG) is spanned by the
images of the groups Hi(MGj ), for all j such that
Gj ≤ G. In other words, the algebraic content of
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all possible i-th homology groups Hi(MG) is entirely
determined by a finite amount of information. Such
extreme finiteness would imply a kind of universality
in the presentations of these groups, which in turn
would imply, as one particular example, a uniformity
in the kinds of torsion that can possible appear. We
will return to the example of the matching complex
in later sections.

We are now ready to give a few formal definitions.

Definition 2.1. The Graph Minor Category G
is the category whose objects are graphs, and whose
morphisms are minor morphisms. A minor mor-
phism ϕ : G′ → G is a map of sets,

ϕ : V (G′) t E(G′) t {?} → V (G) t E(G) t {?}

satisfying the following conditions:

• ϕ(V (G′)) = V (G) and ϕ(?) = ?;

• if e ∈ E(G′) has endpoints {a, b}, and ϕ(e) 6= ?,
then either ϕ(e) = ϕ(a) = ϕ(b) is a vertex of G,
or ϕ(e) is an edge of G with endpoints ϕ(a) and
ϕ(b);

• ϕ maps ϕ−1(E(G)) bijectively onto E(G);

• for any vertex v ∈ V (G), the preimage ϕ−1(v),
thought of as a subgraph of G′, is a tree.

The edges of G′ that ϕ maps to the character ? are
said to be deleted by ϕ, whereas the edges that ϕ
maps to a vertex of G are said to be contracted by
ϕ.

Let us take a moment now to explain more thor-
oughly the four conditions of a minor morphism. The
first condition states that the morphism only sends
vertices to other vertices (i.e. not to edges), and that
it does so surjectively. This condition also asserts
that the “deletion character” ? must map to itself.
The second condition asserts that for any given edge
e, with endpoints {a, b}, one of three things must
happen: either the edge is deleted (i.e. mapped to
the deletion character), it is contracted to the vertex
ϕ(e) in which case a and b must also be mapped to
ϕ(e), or it is mapped to a new edge whose endpoints
must be the images of the endpoints of a and b. The

third condition states that the edges of G′ that are
neither deleted nor contracted can be uniquely identi-
fied with edges of G. Note that we will usually think
about this condition in the opposite way, that if

ϕ : G′ → G

is a minor morphism, then the edges of G can be
found living inside of G′. Finally, the last condition
amounts to saying that minor morphisms are only
allowed to contract trees within G′, i.e. cycles may
not be contracted. The primary content one should
takeaway from this description is that

There exists a morphism ϕ : G′ → G ⇐⇒ G ≤ G′.

One should also note that the category G is not sim-
ply the opposite category of the graph minor poset.
Indeed, the minor morphisms also encode information
about which edges are being deleted and contracted,
as well as possible movement of the vertices via graph
automorphisms, i.e. permutations of the vertex set
that preserve the adjacency relation.

Definition 2.2. A Gop-module is a covariant func-
tor M from Gop to the category of finitely generated
abelian groups. Concretely, a Gop-module is a collec-
tion of abelian groups {M(G)}, one for each graph
G, such that for every minor morphism ϕ : G′ → G

(equivalently for every realization of G as a minor
of G′), there is a homomorphism M(G) → M(G′),
defined in such a way so-as to respect composition
of minor morphisms. We say that a Gop-module M
is finitely generated if there is a finite collection
of graphs {Gj} such that for any graph G, M(G) is
spanned by the images of the groups M(Gj) induced
by all possible minor morphisms G → Gj . We of-
ten refer to the graphs {Gj} as generators of the
module.

Note that we have changed from G to Gop pre-
cisely because we want our morphisms to go in the
same direction as the minor relation. Let’s take a
quick moment to look at some simple examples of
Gop-modules.

• The Trivial Module: For each graph G we set
M(G) = Z, whereas for every minor morphism
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we assign the identity map. This module is gen-
erated by the graph with a single vertex and no
edges.

• The Edge Module: For each graph G we set
M(G) = ZE(G), the free abelian group on the
edges of G. We have already discussed that any
minor morphism G′ → G induces an inclusion
E(G) ↪→ E(G′), and we use this inclusion to
define the map M(G)→M(G′). This module is
generated by the line segment and the loop.

• The Spanning Tree Module: For each graph
G we set M(G) to be the free abelian group on
the spanning trees of G. Any minor morphism
G′ → G can be used to map a spanning tree
of G to one of G′ by including the edges of this
tree into G′ while also adding in the edges of G′

that we contracted by the minor morphism. This
module is once again generated by a single point,
as a minor morphism to a point is equivalent to
a choice of spanning tree.

• The Homology of the Matching Complex:
For any fixed i ≥ 0, the collection of groups
{Hi(MG)}G form a Gop-module, as outlined
above. It is conjectured that this module is
finitely generated, though the justification for
this is far from obvious! We will return to this
example in later sections.

As the usage of “module” suggests in the name Gop-
module, virtually any intuition or construction that
one has from the classical theory of rings and modules
will carry over into this context. In particular, terms
such as kernel, cokernel, and submodule continue
to have meaning here using the most natural possible
definitions. Moreover, the condition of being finitely
generated has implications that go beyond the most
obvious. For instance,

• [MPR20] Uniform Boundedness of Torsion:
If M is finitely generated, then there exists an
integer dM such that for any graph G, the ex-
ponent (i.e. largest non-trivial torsion) of the
group M(G) divides dM .

• [MR20] Uniform Boundedness of Rank: If
M is finitely generated, then there exists a poly-
nomial PM (x, y) ∈ Q[x, y] such that, for any
graph G, the rank of the group M(G) is at
most PM (|E(G)|, |V (G)|) · τ(G), where τ(G) is
the number of spanning trees in G.

Note that the Spanning Tree Module illustrates
that the bound given in the second point is actually
sharp.

As suggested earlier, a proper categorification of
the Graph Minor Theorem should have something to
say about Noetherianity of some algebra. This is in-
deed the case.

Conjecture 2.3 (The Categorical Graph Minor The-
orem). LetM denote a finitely generated Gop-module.
Then all submodules of M are finitely generated.

A proof of Conjecture 2.3 was originally claimed in
[MPR20], though a gap was discovered in the proof
which, as of the writing of the present article, has not
yet been filled. To see how this conjecture relates with
the Graph Minor Theorem, let S be any minor-closed
set of graphs, and consider the following example. Let
M denote the Gop-submodule of the trivial module for
which

M(G) =

0 if G ∈ S,

Z otherwise.

By definitionM(G) is a submodule of the trivial mod-
ule, and therefore M must be finitely generated, pro-
vided that Conjecture 2.3 is true. That is, there is
some finite collection of graphs {Gj}, for which the
groups M(Gj) contain all algebraic content appear-
ing in M . Thus, the containment problem for S (i.e.
whether or not M(G) is zero) is determined entirely
by whether or not you have one of the Gj as a minor.
This is precisely the Graph Minor Theorem!

Just as the Graph Minor Theorem generalizes a
wide variety of classical well-quasi-order theorems,
one can see that the Categorical Graph Minor Theo-
rem generalizes or implies many Noetherianity state-
ments. See [SS17] for an overview of such state-
ments. Also see [Sno13] for the Noetherianity state-
ment associated to Higman’s lemma, and [Bar15] for
the Noetherianity associated to Kruskal’s Tree Theo-
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rem. This last example is especially relevant for what
we will now call the Weak Categorical Graph Minor
Theorem, whose proof follows from the work of [PR],
which built on the work of [Bar15].

For a given graph G, its combinatorial genus is
defined as the quantity |E| − |V | + 1. For instance,
having combinatorial genus equal to 0 is equivalent
to being a tree.

Theorem 2.4 (The Weak Categorical Graph Minor
Theorem). Let g ≥ 0 be an integer, and let Gg be the
full subcategory of G whose objects are graphs with
combinatorial genus at most g. If M is a finitely
generated Gopg -module, all of its submodules are also
finitely generated.

The theorems of the next section will all be stated
in terms of the subcategory Gg, however all of them
could be extended the the whole of G provided that
Conjecture 2.3 were verified. One should also note
that this combinatorial genus stratification of the
graph minor category is not the only one that one
might try to apply. It would be interesting to see
whether the subcategories of bounded tree-width or
other well known “minor-monotone” graph invari-
ants have representations with similar Noetherianity
statements.

3 Applications

In this section we detail some applications of the Cat-
egorical Graph Minor Theorem to problems arising
from topology. To start, let’s return to the setup from
last chapter related with the matching complex. Re-
call that for a graph G, the matching complexMG is
the simplicial complex whose i-simplices are match-
ings of i+ 1 edges of G. We showed last chapter that
for any fixed i ≥ 0 the assignment G 7→ Hi(MG) is
a well-defined Gop-module, and therefore also a Gopg -
module for all g. We will now show that this module
is also finitely generated as a Gopg -module.

To begin, let Ei denote the Gopg -module for which
Ei(G) is the free abelian group on collections of i+ 1

edges ofG. For instance, E0 is precisely the restriction
of the Edge Module to Gopg . We see that Ei is finitely
generated by, for instance, the set of all graphs with

i+ 1 edges. Moreover, the simplicial i-chains ofMG

are easily seen to be a submodule of Ei, and therefore
must also be finitely generated. Taking it one step
further the Gopg -module Hi(MG) is a subquotient of
the simplicial i-chains, and must also be finitely gen-
erated. This concludes the proof. Note this exact
proof would also prove finite generated for the full
Gop-module, provided Conjecture 2.3.

The above proof is an extremely common and ef-
fective means for proving that a given Gopg -module is
finitely generated: find some Gopg -module that is eas-
ily shown to be finitely generated, and realize your
module as an explicit subquotient. In some cases
things don’t work out quite as directly, but often one
can at least find a spectral sequence that converges to
your module, and the ultimate conclusion remains the
same. Once again we note that the feature of finite
generation has a number of non-trivial consequences.
For instance one has the following.

Theorem 3.1 (Miyata and Ramos, [MR20]). There
exists an integer di,g ≥ 1 such that for any graph
G of combinatorial genus at most g, the exponent of
Hi(MG) divides di,g.

Torsion in the matching complex is something that
has received a fair amount of attention in recent
years, where it is noted that all torsion thus far dis-
covered have orders that are small primes [Jon10].

It should also be noted that one limitation of this
style of proof is that it gives you almost no control
over what the generators are. Such control could be
given if one were to develop a robust computational
theory similar to the classical theory of Gröbner
bases for the representation theories of Sam-Snowden
Gröbner Categories, that we touch upon in the fi-
nal section. This remains an interesting avenue for
future research.

The reader may have noticed that the proof of finite
generation is extremely generalizable. In particular,
a large number of graph complexes will have sim-
ilar finitely generated homologies, and therefore, for
instance, bounded torsion. Examples of such com-
plexes include the complex of bounded degree sub-
graphs, complexes of triangle-free subgraphs, com-
plexes of t-colorable subgraphs and more. For more
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on these complexes, see the book [Jon07], as well as
the references therein

Another class of interesting examples comes from
the study of configuration spaces.

Definition 3.2. For any topological space X and
any integer n ≥ 1 the configuration space on X

on n-points is the quotient space

Fn(X) = {(x1, . . . , xn) ∈ Xn | xi 6= xj}/Sn,

where the symmetric group Sn acts by permuting
coordinates.

Configuration spaces have been a topic of serious
study for decades, although much of what is under-
stood relates with cases wherein X is a manifold.
More recently, however, there have been consider-
able advances made in the theory of configuration
spaces of graphs [ADCK19,AK20,Ghr01]. One ques-
tion of considerable interest with regards to these
spaces is whether or not their homology ever admits
odd torsion. An affirmative answer to this question
would have implications as far ranging as physics and
robotics [Ghr01].

Let G be a graph and n ≥ 1 a fixed integer. It
is an interesting fact that any minor morphism ϕ :

G′ → G will induce a map Hi(Fn(G))→ Hi(Fn(G′))

[ADCK19]. Using these maps, we now find ourselves
with new Gop-modules G 7→ Hi(Fn(G)). Using the
Weak Categorical Graph Minor Theorem, the follow-
ing is proven in [PR].

Theorem 3.3 (Proudfoot, and Ramos, [PR]). For
any i, n ≥ 1, the Gopg -module Hi(Fn(G)) is finitely
generated. In particular, there exists some integer
di,n,g ≥ 1 such that the order of any torsion appearing
in Hi(Fn(G)) divides di,n,g.

It was proven by Ko and Park [KP12] that for any
graph the first homology group H1(F2(G)) has tor-
sion if and only if G is non-planar, and that any tor-
sion which appears must be 2-torsion. The above
theorem therefore shows that this kind of behavior is
one instance of something more general.

As with the matching complex example, it is not
currently known what the generators are for the mod-
ules Hi(Fn(G)) for most choices of i, n, and g. There

are two notable cases where it is known or partially
known, however. For i = 1 and any n ≥ 1, the gen-
erators are the loop as well as all star graphs (that
is, trees with one vertex of degree ≥ 3 and all other
vertices of degree 1) with ≤ n + 1 edges [ADCK19].
For i = 2, and n = 3, although the full generating set
is not known, we do know what the planar generators
are. These will be the dumbbell graph of a line seg-
ment with a loop on either end, the graph that looks
like the letter Y with a loop attached to one of its
leaves, and the banana graph θ4 of two vertices con-
nected by 4 edges [AK20]. As a side note, this third
generator is particularly special, as H2(F3(Θ4)) con-
tains a class which is not toric (i.e. a product of two
copies of S1). In fact, it is represented by a surface
of genus 3 [CL18,WG17]! Further note that all of
these cases show that the generators do not depend
on g when g � 0, a fact which supports the sugges-
tion that Theorem 3.3 can be extended to the whole
graph minor category. As with all theorems in this
work, the proof of Theorem 3.3 for the whole of Gop

would be immediate provided the verification of 2.3.
It can be shown that the integer di,n,g of the

previous theorem does not actually depend on n

[MR20]. This strengthening comes from the topology
and combinatorics of the situation, and in particular
depends on more than just the (Weak) Categorical
Graph Minor Theorem. Let’s consider this now.

One of the great early tools used in the study of
configuration spaces of manifolds was the idea to “add
a point at infinity.” Namely, to introduce a homotopy
class of maps

Fn(X)→ Fn+1(X)

and see the behavior of the induced directed system
on homology. It therefore becomes natural to ask
whether one is able to introduce points to Fn(G),
whenever G is a graph. The answer to this question
is yes! In fact, for every edge e of G one will have a
map,

Fn(G)
xe→ Fn+1(G), (1)

which one can think of as introducing a new point
on the edge e. These maps were first constructed,
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Figure 1: An example of the map xe. In this picture
the end points of the edge e are colored in black,
while the points coming from the configuration are in
white.

though only at the level of homology, by the author
in the case of trees [Ram18]. Independently, the full
construction at the level of topology described below
was achieved by An, Drummond-Cole, and Knudsen
[ADCK19, ADCK20a], who also expanded it to all
graphs . To illustrate how this map is defined, imag-
ine having placed n points on G, and consider those
points appearing on an edge e = {a, b}. Fix for now
an identification of e with the interval [0, 1] and list
(in order from left to right) all points appearing on
e as well as the end points a, b. The image of this
configuration under xe leaves any points not on e un-
changed whereas it replaces the each of the original
points on e with the midpoint of itself and the next
member of the list just constructed. Therefore, for
instance, if e had no points on it originally, the new
configuration will have precisely one point at the cen-
ter of e. On the other hand, if the original configu-
ration had one point on the interior of e, then the
new configuration will have two points on e, one at
the mid point of a and the original point and one at
the midpoint of the original point and b. We give an
illustration of this map as Figure 1

Using this construction, the following theorem was
proven.

Theorem 3.4 (An, Drummond-Cole, and Knudsen,
[ADCK19]). For i ≥ 0 and any graph G, write Hi(G)

for the graded abelian group

Hi(G) :=
⊕
n

Hi(Fn(G)).

Then the edge stabilization maps (1) induce an action
by the polynomial ring Z[xe]e∈E(G), endowing Hi(G)

with the structure of a finitely generated graded mod-
ule over this ring.

The above theorem now allows us to study con-
figuration spaces of graphs from the perspective of
commutative algebra. There are a variety of results
in this vein, one of which we now spotlight. Recall
that for a finitely generated graded module M over a
polynomial ring, the function

n 7→ rank(Mn)

is in eventual agreement with a polynomial – the
Hilbert polynomial of the module. Let G be a
graph not homeomorphic to a loop, and write ∆i

G for
the largest number of connected components that G
can be broken into by the removal of exactly i vertices
of degree at least 3. By convention, ∆i

G = 0 if G has
less than i vertices of degree at least 3. The follow-
ing theorem was proven for trees by the author, and
for all graphs by An, Drummond-Cole and Knudsen
[ADCK20a].

Theorem 3.5 (An, Drummond-Cole, and Knudsen
[ADCK20a]). Let G be a graph that is not homeo-
morphic to a loop. Then for all i ≥ 0 the degree of
the Hilbert polynomial of Hi(G) is precisely ∆i

G − 1.

Note that in followup work An Drummond-Cole
and Knudsen also computed the leading coefficient of
the Hilbert polynomial, once again in terms of invari-
ants of G [ADCK20b]. One consequence that imme-
diately follows from this theorem is that if G is bi-
connected, that is, if removal of any vertex does not
disconnect the graph, then the degree of the Hilbert
polynomial of H1(G) is zero. In particular, the rank
ofH1(Fn(G)) is constant in n. This fact was observed
much earlier by Ko and Park [KP12] using totally dif-
ferent means. We therefore see that these homology
groups seem to encode an eclectic collection of prop-
erties of the graphs including planarity and connec-
tivity. It is an active line of research to understand
what other graph theoretic properties can be found
inside these spaces.

Thinking about the homology groups Hi(Fn(G))
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as a family with two varying parameters, n and G,
we have now seen that one obtains finite generation
results by fixing one and varying the other. It is then
natural to ask whether these two orthogonal results
can be made compatible with one another. This is
indeed the case!

Definition 3.6. Let G be a graph. The (free) edge
algebra of G is the polynomial ring on the edges of
G,

AG = Z[E(G)].

We define the universal edge algebra to be the
functor

A• : Gop → Z−Alg

defined on objects by

G 7→ AG

and on morphisms in the same way as the Edge Mod-
ule. An A•-module is a Gop-module M such that
M(G) is an AG-module for every G, and for every
minor morphism ϕ : G′ → G and element a ∈ AG,
the following diagram commutes,

M(G)
M(ϕ)−−−−→ M(G′)

a·
y yA(ϕ)(a)·

M(G)
M(ϕ)−−−−→ M(G′)

An A•-moduleM is said to be finitely generated if
there exists a finite set of graphs {Gj} such that for
any graph G, M(G) is spanned (note here that span-
ning is in reference to the AG-action) by the images
of theM(Gj). As with everything else in this section,
we may also consider A•,g, defined by restricting A•
to Gopg .

We saw above that for any i ≥ 0, the assignment

G 7→ Hi(G)

defines an A•-module. As another example, con-
sider the ideal IG of AG generated by products xexe′ ,
whenever e, e′ are not adjacent to one another. It is
clear that the action of minor morphisms preserves
this condition of being non-adjacent, and therefore
I• is an A•-submodule of A•.

For any fixed graph G, the edge algebra AG clearly
satisfies a Noetherian property by virtue of it being a
polynomial ring. What is much less clear is whether
each of these individual Noetherian properties can be
glued together, so to speak, to say something about
modules over the universal algebra A•. While we
once again must keep the full-strength statement in
the realm of conjecture, one can say the following.

Theorem 3.7 (Miyata, Proudfoot, and Ramos,
[MPR20]). If M is a finitely generated A•,g-module,
then all A•,g-submodules of M are also finitely gen-
erated.

To prove this version of this theorem for Gop-
modules, one would need the Categorical graph minor
theorem, as well as a kind of universal Gröbner ba-
sis approach [MPR20]. By consequence, we see that
for any finitely generated A•,g-module M , not only
is M(G) determined by M(Gj) for some finite list
of graphs {Gj}, but the syzygies of M(G), in the
commutative algebra sense, are also all determined
by some (possibly different) finite list of graphs. This
is precisely why the universal exponent of Theorem
3.3 does not depend on n.

4 An Outline of the Proof

In this section we provide an outline of the proof of
the Weak Categorical Graph Minor Theorem 2.4. We
do this not only to spotlight the beautiful underlying
theory, due to Sam and Snowden [SS17], but also be-
cause we believe it does a good job of illustrating
how the combinatorics of the Graph Minor Theorem
informs the algebra of the Weak Categorical Graph
Minor Theorem. The content of this section is a bit
more on the technical side, though we have omitted
many details in an attempt to make it more readable.
We also end the work by pointing out what exactly
the difficulty is in lifting the weak result to the full
strength of Conjecture 2.3, and how one would pre-
sumably aim to fix it.

We begin, as Sam and Snowden did in their semi-
nal work [SS17], by recalling the Hilbert Basis The-
orem. For the purposes of this discussion write
R = k[x1, . . . , xn], where k is a fixed commutative
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Noetherian Ring. The Hilbert Basis Theorem then
states that all submodules of any finitely generated
module must be finitely generated. That is, that
finitely generated modules over R must be Noethe-
rian. The proof of the Hilbert Basis Theorem that we
will concern ourselves with is the standard approach
through Gröbner bases, and proceeds as follows:
To begin, we apply standard reductions to show that
we only need to prove that submodules (i.e. ideals) of
R itself must be finitely generated. Next, consider the
lexicographical order on monomials in R. This order
not only imposes a well-order on all monomials, but
also has the property of being preserved under multi-
plication. In particular, we may therefore define the
leading term of any element f ∈ R to be the largest
monomial among all those appearing in f . Now given
any ideal I of R, one defines the initial ideal I0 to
be the ideal generated by the leading terms of all el-
ements in I. A standard argument then shows that
I is finitely generated if and only if I0 is, whence it
suffices to prove that all monomial ideals are finitely
generated. If we encode monomials of R as elements
in Nn, then the standard coordinate-wise partial or-
der on Nn is seen to be equivalent to the divisibility
partial order on monomials. Therefore, that mono-
mial ideals are finitely generated is equivalent to the
fact that the standard coordinate-wise order on Nn

does not permit infinite anti-chains. This latter fact
is true according to Dickson’s Lemma, and we are
done.

To summarize, the above proof of the Hilbert Basis
Theorem proceeds in three major steps:

1. Reduce the problem from all finitely generated
modules, to free (finitely generated) modules;

2. Define a well-order on the set of monomials
that respects the action of the ring. Use this
well order to reduce the problem to monomial-
generated submodules of the free module;

3. Encode divisibility of monomials into some poset
that is known to not have infinite anti-chains.
Use this to deduce that all monomial-generated
submodules of the free module must be finitely
generated, concluding the proof.

It is the great innovation of [SS17] that the above
three steps can be replicated in contexts similar to
the Gopg -modules of the current note. They refer to
this as the theory of Gröbner categories and their
modules. We consider each of the above three steps
in turn.

To begin, what are the “free” Gopg -modules? For
any fixed graph G of combinatorial genus at most g
we define,

FG(G′) = ZHomGg (G
′,G),

the free abelian group on the Hom-set HomGg (G′, G).
The maps induced by minor morphisms are then de-
fined by precomposition. For instance, if G is the
graph with one vertex and no edges, then,

FG(G′) = ZHomGg (G
′,G) = Z{Spanning trees of G′}

is the Spanning Tree module from above. For numer-
ous homological reasons related with the vanishings
of certain derived functors, it turns out that the mod-
ules FG are each appropriate to be called “free.” Note
that this is analogous to the context of graded mod-
ules over the ring R = k[x1, . . . , xn], where there is
one free module for each natural number. The same
style of argument which allowed one to reduce to sub-
modules of free modules in the proof of the Hilbert
Basis Theorem will continue to work here, allowing
us to reduce the Weak Categorical Graph Minor The-
orem to proving that the submodules of the FG are
finitely generated.

Fixing now a graph G of combinatorial genus at
most g for all time, Sam and Snowden [SS17] define
a monomial of FG to be any natural basis element
eϕ ∈ ZHomGg (G

′,G). Our Step 2 insists that we should
come up with some well-order on these monomials
that respects the action of the maps induced by mi-
nor morphisms. Unfortunately, this is actually im-
possible! Indeed, because minor morphisms include
graph automorphisms, if G has any non-trivial au-
tomorphisms then we will not be able to well-order
our monomials in a way consistent with this action.
Sam and Snowden come up with a solution to this
(fairly common) problem in the following way: In-
stead of thinking about our original category Gg, con-
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sider modules over a different category G̃g which is
more rigid than Gg, in the sense that it has no auto-
morphisms, while also not being “too different” from
Gg. It is proven that in this circumstance a Noethe-
rian property for modules over G̃g

op
implies the same

for modules over Gopg .

In the original work [SS17], Sam and Snowden
make this idea of not being too different precise us-
ing what they call Property (F). Property (F) is
a feature of a functor Φ : G̃g → Gg that general-
izes the property of being a right adjoint. Instead
of getting too deep in the technicalities here, we il-
lustrate the spirit of Property (F) with an example.
Consider the category FI whose objects are the fi-
nite ordinals [n] = {1, . . . , n} and whose morphisms
are injections. This category also clearly has auto-
morphisms (namely, the permutations), so we instead
consider the category F̃I of finite ordinals with order
preserving injections. This category does not have
non-trivial automorphisms, and is also very closely
related with FI, in that for any [n] and any injection
of sets [n] ↪→ [m], there is always an ordered injec-
tion [n] ↪→ [m] that agrees with the original injection
up to precomposition by some permutation of [n]. In
other words, for any n, there is a finite collection of FI

morphisms (e.g. the permutations of [n]) such that
every injection originating from [n] agrees with an or-
dered injection originating from [n] up to one of these
morphisms. Sam and Snowden loosely describe this
phenomenon as F̃I having a sort of finite index within
FI [SS17].

Coming back to our Graph Minor Category, the
challenge now becomes to choose the correct cate-
gory G̃g. It turns out the category we are looking for
is the category whose objects are graphs of genus at
most g, that have been equipped with a choice of a
rooted and planar spanning tree, as well as a direction
and ordering of its extra (outside the given spanning
tree) edges. The morphisms of this category will be
contractions that preserve all of this structure. By
demanding all of the extra structure that was added
be preserved, we have eliminated all automorphisms.
Moreover, essentially because any graph can only be
given the extra data of a rooted spanning tree and
directions on its extra edges in finitely many ways,

as well as the fact that the restriction on g disallows
arbitrarily long chains of deletions, the forgetful func-
tor G̃g → Gg can be seen to have Property (F). We
can therefore assume that we have been working with
the category G̃g this entire time, that our fixed graph
G has been given the data of both a planar rooted
spanning tree, and directions and orderings of its ex-
tra edges, and re-examine our Step 2. In this case,
the desired well order is presented in [PR].

Step 3 asks us to encode the divisibility relation
of monomials into some poset that is known to not
admit infinite anti-chains. So what exactly is the di-
visibility relation between monomials in our setting?
Well, for traditional monomials over the polynomial
ring, divisibility meant that there was some some el-
ement f of the ring for which one monomial was f
times the other. Using our definition of monomials in
free G̃g-modules we see that this naturally translates
to say that eϕ is divisible by eψ if and only if there is
some morphism ζ in G̃g such that ϕ = ψ ◦ ζ. Trans-
lating the relationship between minor morphisms and
the minor relation, this tells us that the divisibility
relationship between monomials is the minor relation
limited to the set of directed and edge-ordered graphs
containing G as a minor. While the Graph Minor
Theorem as previously presented does not guarantee
that this poset has no infinite anti-chains (because of
the extra data we’ve imposed on each graph) there is
a stronger labeled version of the Graph Minor The-
orem [RS10], as well as an order preserving version
of Kruskal’s Tree Theorem [Bar15], that does give us
what we want.

Looking closely at everything discussed above, it is
hopefully clear that the only thing preventing us from
proving Conjecture 2.3 is choosing the right category
G̃. This trick of choosing a rooted spanning tree will
no longer work here! In fact, to the knowledge of
the author, there are no currently known “rigidifica-
tion” of the Graph Minor Theorem that are imme-
diately applicable, just as we relied on the rigidified
Tree Theorem for the bounded genus case. Presum-
ably, proving such a rigidification would require one
to have very deep intimate knowledge of how the orig-
inal Graph Minor Theorem is proven.
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